10 research outputs found

    Bayesian Modelling Approaches for Quantum States -- The Ultimate Gaussian Process States Handbook

    Full text link
    Capturing the correlation emerging between constituents of many-body systems accurately is one of the key challenges for the appropriate description of various systems whose properties are underpinned by quantum mechanical fundamentals. This thesis discusses novel tools and techniques for the (classical) modelling of quantum many-body wavefunctions with the ultimate goal to introduce a universal framework for finding accurate representations from which system properties can be extracted efficiently. It is outlined how synergies with standard machine learning approaches can be exploited to enable an automated inference of the most relevant intrinsic characteristics through rigorous Bayesian regression techniques. Based on the probabilistic framework forming the foundation of the introduced ansatz, coined the Gaussian Process State, different compression techniques are explored to extract numerically feasible representations of relevant target states within stochastic schemes. By following intuitively motivated design principles, the resulting model carries a high degree of interpretability and offers an easily applicable tool for the numerical study of quantum systems, including ones which are notoriously difficult to simulate due to a strong intrinsic correlation. The practical applicability of the Gaussian Process States framework is demonstrated within several benchmark applications, in particular, ground state approximations for prototypical quantum lattice models, Fermi-Hubbard models and J1−J2J_1-J_2 models, as well as simple ab-initio quantum chemical systems.Comment: PhD Thesis, King's College London, 202 page

    A framework for efficient ab initio electronic structure with Gaussian Process States

    Full text link
    We present a general framework for the efficient simulation of realistic fermionic systems with modern machine learning inspired representations of quantum many-body states, towards a universal tool for ab initio electronic structure. These machine learning inspired ansatzes have recently come to the fore in both a (first quantized) continuum and discrete Fock space representations, where however the inherent scaling of the latter approach for realistic interactions has so far limited practical applications. With application to the 'Gaussian Process State', a recently introduced ansatz inspired by systematically improvable kernel models in machine learning, we discuss different choices to define the representation of the computational Fock space. We show how local representations are particularly suited for stochastic sampling of expectation values, while also indicating a route to overcome the discrepancy in the scaling compared to continuum formulated models. We are able to show competitive accuracy for systems with up to 64 electrons, including a simplified (yet fully ab initio) model of the Mott transition in three-dimensional hydrogen, indicating a significant improvement over similar approaches, even for moderate numbers of configurational samples.Comment: 15 pages, 5 figure

    Impact of conditional modelling for universal autoregressive quantum states

    Full text link
    We present a generalized framework to adapt universal quantum state approximators, enabling them to satisfy rigorous normalization and autoregressive properties. We also introduce filters as analogues to convolutional layers in neural networks to incorporate translationally symmetrized correlations in arbitrary quantum states. By applying this framework to the Gaussian process state, we enforce autoregressive and/or filter properties, analyzing the impact of the resulting inductive biases on variational flexibility, symmetries, and conserved quantities. In doing so we bring together different autoregressive states under a unified framework for machine learning-inspired ans\"atze. Our results provide insights into how the autoregressive construction influences the ability of a variational model to describe correlations in spin and fermionic lattice models, as well as ab initio electronic structure problems where the choice of representation affects accuracy. We conclude that, while enabling efficient and direct sampling, thus avoiding autocorrelation and loss of ergodicity issues in Metropolis sampling, the autoregressive construction materially constrains the expressivity of the model in many systems

    Quantum Gaussian process state:A kernel-inspired state with quantum support data

    No full text
    We introduce the quantum Gaussian process state, motivated via a statistical inference for the wave function supported by a data set of unentangled product states. We show that this condenses down to a compact and expressive parametric form, with a variational flexibility shown to be competitive or surpassing established alternatives. The connections of the state to its roots as a Bayesian inference machine as well as matrix product states, also allow for efficient deterministic training of global states from small training data with enhanced generalization, including on application to frustrated spin physics
    corecore